
A. M. SAXENA AND B. P. SCHOENBORN 813 

00 

do 

Angle of incidence of the mean ray on the 
multilayer. The axis of the second collimator 
makes an angle 200 with the mean incident 
ray. 
Angle of incidence of a particular ray on the 
multilayer. 
Angle of incidence of the mean ray on the 
analyzer. 
Angle subtended by the crystallite which re- 
flects the particular ray with the surface of the 
analyzer. 
Angle of incidence of the particular ray on the 
crystallite at an angle fl with the surface of the 
analyzer. 
Lattice spacing of the analyzing crystal. 
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In a spectrometer with finite beam divergence the vertical size of the reflections will increase with the 
order of reflection. This effect will be more pronounced if the mosaic width of the sample is large, which 
is often the case with biological samples. When the size of the reflection is greater than the detector size, 
a correction factor has to be introduced to account for this loss of intensity. A method of calculating 
this correction factor for a given beam divergence and mosaic width has been developed. 

In recent years a number of neutron diffraction studies 
on biological membranes have been reported. These 
membranes have a lamellar structure with d spacing 
ranging from 50 to 300/~. Some of these systems show 
a high degree of crystalline order with mosaic spreads 
of less than 0.3 ° (FWHM) like that found in lecithin 
cholesterol (Blasie, Schoenborn & Zaccai, 1975; 
Schoenborn & Blasie, 1975; Worcester, 1976). Other 
membranes often do not have good orientation and 
mosaic spreads of up to 60 ° have been reported for 
retinal rods (Yeager, 1975; Chabre, Saibil & Worcester, 
1975). In this paper we will study the effect of vertical 
divergence of the neutron beam on the intensities of 
Bragg reflections for a sample with large mosaic 
distribution. 

The main spectrometer characteristics influencing 
the intensities of Bragg reflections are: the diffraction 
geometry (Lorentz factor), the wavelength bandwidth 
A2 and the beam divergence A0. The Lorentz factor 
accounts for the fact that different sets of crystal planes 
do not have equal opportunity to diffract the incident 
beam. For single-crystal rotation techniques this fac- 

tor is a measure of the relative amounts of time spent 
by the corresponding reciprocal-lattice point in passing 
through the Ewald sphere and is equal to 1/sin 20 for 
lamellar samples when the rotation axis is normal to 
the plane containing the incident and scattered beam 
(Arndt & Willis, 1966) where 0 is half the scattering 
angle. The effective wavelength bandwidth A2 is 
determined by the mosaic characteristic of the mono- 
chromator and the beam divergence AO depends on 
various collimating slits. The effect of these two will 
be to smear the Ewald sphere. A neutron spectrometer 
differs in two important aspects from an X-ray spec- 
trometer. Since the neutron flux is much lower, one 
has to work with greater A2 and d0 to get observable 
intensities for weak reflections. Second, the neutron 
beam is monochromatized by reflection from a single 
crystal which leads to a correlation between the wave- 
length and diffraction angle from the monochromator. 
The result of this is that the resolution will depend 
on the constants of the spectrometer, the scattering 
angle and also the characteristics of the sample. 

In order to determine an unknown structure, one 
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needs the relative intensities of various orders of re- 
flection. In many cases it is possible to collect these 
intensities in such a way that the relative intensities 
are independent of the resolution function even though 
individual intensities are affected by it. For lamellar 
samples, however, the acceptance angle of the detector 
is important and needs special attention. With samples 
of large mosaic width, the vertical spread of reflections 
increases rapidly with the order of reflection, h, and 
the detector may not receive the entire diffracted beam. 
The fractional intensity received by the detector de- 
creases with increasing h and a correction factor has 
to be introduced to take this loss of intensity into 
account. 

The observed intensity of the hth-order reflection 
I(h) is related to the corresponding structure factor 
F(h) by the relation 

I(h) = L1  L21F(h)I 2 (1) 
where L 1 is the correction term due to finite resolution 
of the spectrometer and the angular velocity factor, 
and L2 is different from unity when the detector is not 
wide enough to receive the entire beam diffracted in 
the vertical direction. 

For low-angle scattering, L1 has generally been ap- 
proximated to h and the total correction factor L = 
L1L2 is usually taken as h for samples with small 
mosaic and h 2 for samples with a large mosaic width. 
Chabre, Saibil & Worcester (1975) used a correction 
factor h in their work on oriented retinal rods in which 
data were collected with a 64 x 64 cm position-sensi- 
tive detector. Worcester (1976) and Worcester & Franks 
(1976) used the same correction factor in their work on 
lecithin and also for a study of purple membranes. 
Zaccai, Blasie & Schoenborn (1975) used a correction 
factor h 2 in a study of DPL where the F W H M  of 
sample mosaic was 25 °. Yeager (1975) originally used 
a correction factor of h 2 in a study of frog rod outer- 
segment disc membranes with a mosaic width of 60 ° 
but later took the detector acceptance angle into ac- 
count. 

It is obvious that the conclusions about a structure 
will be substantially influenced by the value assigned 
to the correction factor. Since L=h 2 is only an ap- 
proximation for large mosaic distribution, it is neces- 
sary to develop a procedure by which the exact 'cor- 
rection factor' may be calcuted for a given system. 
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A(ao) MONOCHROMATOR 

Fig. 1. Experimental setup for elastic neutron scattering. A, B and 
C are collimating slits with characteristic widths So, el and e2 
respectively. 

Lorentz factor L1 

The most convenient method of determining the struc- 
ture of lamellar samples is to measure the intensity of 
rocking curves of different orders in which the detector 
is set to receive the reflection of a particular order 
and the sample is rocked about the Bragg position. 
Neglecting vertical divergence for the present, the in- 
tensity distribution in a rocking curve may be written 
as  

(A~o) z] 
I(Aqg)= Io exp ~ - j ,  (2) 

where A q~ is the angular deviation of the crystal from 
the optimum setting and Io is the maximum intensity 
of the reflection, a is the characteristic width of the 
rocking curve, which will depend on the widths of the 
slits and the mosaic distributions of the monochro- 
mator and the sample. In writing (2), all these distribu- 
tions have been assumed to be Gaussian in shape. 

A typical experimental setup for a two-axis spec- 
trometer is shown in Fig. 1. ~o, c~1 and ~2 are the char- 
acteristic widths of the three collimating slits. It is 
assumed that a ray making an angle 0 with the axis 
of a slit is attenuated by the factor exp (-½(0/cq) 2) 
where i=0,  1, or 2. The mosaic widths of the sample 
and the monochromator  are denoted by r/s and r/M 
respectively and are defined in an identical way. The 
probability of finding a mosaic block inclined at an 
angle fl with the surface of the crystal is exp (-½(fl/r/)2). 

The net intensity of the rocking curve is obtained 
by integrating (2) over all values of A q). If this is com- 
bined with the angular velocity factor, the correction 
term LI may be written as (Iizumi, 1973) 

1 
L1 m q  

sin 20B 

x [1 + 4c~rl~t(a-1)2+°~)°~za(2a-1)2+4a2~rl~t 1 
2 2 2 0~2(0~o + ~1 +4t/2) 

(3) 

0B is the Bragg angle for the reflection in considera- 
tion and a =  + t a n  0gtan  OM, where OM is half the 
scattering angle for the monochromator  and the posi- 
tive (negative) sign applies for parallel (antiparallel) 
setting of the monochromator  and the sample. In (3) 
1/sin 20B is the usual angular velocity factor and the 
term inside the brackets represents the contribution 
due to finite resolution. Since a is a function of 0n, 
the resolution correction will, in general, depend on 
h. However, if there is no slit between the sample and 
the detector, 0(2 - ~ -  (3(3 and L1 reduces to 

L1 = 1/sin 20B. (4) 

Therefore the integrated intensity determined with an 
open detector of sufficient size will be independent of 
the resolution of the spectrometer. However, the cor- 
rection factor L1 will be important in cases where a 
Soller slit system is used. 
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Effect of vertical divergence 

Since there is no correlation between wave number 
and direction of the neutron beam striking the mono- 
chromator, the reflected beam will be correlated only 
with respect to its horizontal divergence. This enables 
us to consider the vertical divergence independent of 
the distribution in the scattering plane. If a known 
intensity distribution in the vertical direction from the 
slit and a known mosaic distribution of the sample 
are assumed, the intensity distribution on the face of 
the detector can be calculated by convoluting these 
two functions. 

While one is working with lamellar systems, it is 
advantageous to work with wide vertical slits because 
this exposes a greater area of the sample to the in- 
cident beam with a resultant gain in intensity of the 
diffracted beam. In such a setup the vertical divergence 
of the beam incident on the sample will be determined 
by the dimensions of the neutron beam pipe and the 
mosaic width of the monochromator. For the usual 
geometry the intensity distribution of the incident 
beam in the vertical direction can be closely approx- 
imated by the following function: 

A(z)= 

C, exp ( (z + w/2)2'~ ~--~ .j for z < - w/2 
\ 

C1 for Izl < w/2 

Ca exp ( (z -_ w/2)2'~ 
2[/2 j f o r z>w/2 ,  \ 

(5) 

where z is in the vertical direction, w is the width of 
the central plateau region determined by the vertical 
slits and / / i s  the characteristic width of the Gaussian 
curve forming the wings of the distribution which 
arises as a result of the divergence of the beam. The 
function f~ is shown in Fig. 2. It follows from the 
geometry that 

// = eR (6) 

where e is the angular divergence of the beam in the 
vertical direction and R is the distance of the detector 
from the sample. The requirement that the intensity 
under fa(z) remain constant with R leads to 

Ca = C°d(]/2~// + w) (7) 

where C o is a constant, being equal to the net intensity 
on the sample. It follows from equations (5), (6) and 
(7) that the ratio of intensity under the plateau to that 
under the wings decreases as R increases. 

If the distribution of mosaic blocks in the sample 
is Gaussian, a non-divergent point beam incident on 
the sample will give rise to the following intensity 
distribution at the detector: 

fa(z)= Ca exp - ~-~ , (8) 

where e is the characteristic length of a reflection 

produced by a point source. If the mosaic width of 
the sample, ~Isv, is large, the reflections will be in the 
shape of arcs and 2a will be the length of such an 
arc. It can be shown that to a good approximation 

= 2R~lsv sin 08. (9) 

The constant C2 is determined by normalization and 
is given by 

C 2 = C ° / q / 2 n a  , (10) 

where C O is proportional to the structure factor of the 
reflection at 0~. 

Let I(z) represent the intensity distribution on the 
detector when the beam fl is incident on the sample. 
Then 

I(z)= f 2 ( t - z ) f l ( t ) d t .  (11) 
--OO 

This integration may be evaluated in a straightforward 
manner to give 

rd/2e3CaC2 
I(z)= [2(a 2 + f 1 2 ) ] a / 2  

x roxpS- w/ -z   fl+ o: 
L ~ [  2(~2+//2)  J" erI La[2(a2 + / / 2 ) ]1 /2 ) f  

+oxp{ 2(o¢ 2 -t-//2)j - -e r I  L~F2(¢ 2 + f12)] a/2)j~J 
+(;)l/2 CaC2[erf['w/2-z ) . [w/2+z'-I 

k 21 '20~ +eni2 -r7   ,] j '  
where (12) 

0 0 CaC2 
Ct C2= (2n)a/2o~[(2n)a/2// + w] 

and erf represents the error function defined by the 
following integral 

erf (x)= ~ exp ( -u2)du .  (13) 

Physically speaking, the error function results from 
the convolution of the Gaussian function, f2, with the 
plateau region of incident beam. The exponentials re- 
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Fig. 2. Profile of the incident beam. The width of the central plateau 
is w and fl is the characteristic width of the wings. 
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sult from the convolution of f2 with the Gaussian 
portion of incident beam. In the special case when 
w=0,  both fa and f2 are Gaussian functions, and 
(12) simplifies to 

(2~z)I/2~flC1C2{ z2 } 
/(Z) = ((X2 + fl2)1/2 exp 2(ct2 + f12) , (14) 

which is also a Gaussian function, as expected. Also, 
if the beam divergence is negligible, f l=0  and the 
distribution of intensity on the detector will be given 
by the last term of (12): 

( ) 1 , 2  [(~) {W/2Wz'~l 
/ ( Z ) =  ; o~C1C 2 e r f  +erf\21--T?r~ ) ] . 

(15) 

If the detector slits extend from z = -  l to z =  + l, 
the observed intensity will be obtained by integrating 
(12) over these limits: 

Io(2l) = I(z)dz, 

which gives 

C,C2 erf t 
1i)(2/)= [(21r),/2 fl + w ] j ~/2-,  

ex { + (t~ 2 -4- fl2)1/2 2(~ 2 "Jr" f12) 

Therefore the correction factor for detector with 
vertical acceptance 2l is 

L2(h) = I o( 2l)/I o( oo ) , (18) 

where Io(oo) is the intensity obtained from (16) with 
l=  ~ .  It follows that for a detector large enough to 
receive the entire diffracted beam, L2 = 1 and no cor- 
rection is needed. The correction factor L2 depends 
on qs, R and OB only through ~ as given by (9). 

0.28  I I I I I I I I 

0.24 - - ~  ~ h = I - 

"~ 0.20 ! ~ ~ , -  ------ h=2 _ 
"~ ,_. ---- h-'4 
= ~ ' ~  h = 6  _ 

~d o.=6 
o 

0 .12  = ~ . . .  , \  

. . . .  _ 0.08 z 

O.O4 1 ~ .  "" """ '--"- '" 
"-.. "~.,.... ----.... ~ . ~  

I I ~ " - - . J  "] ...... + . , _ ~ T ' - - ÷ - - _  
I 2 5 4 5 6 "/' 8 9 

z (cm) 

Fig. 3. Distribution of intensity on the face of the detector for r/s = 
5.0 ° and w= 2.0 cm. Intensities have been plotted for h = 1, 2, 4, 
and 6, and have been normalized for equal total intensity. There- 
fore the peak intensity of a lower-order reflection is higher. 

Fig. 3 shows a plot of I(z), the distribution of in- 
tensity on the detector face as calculated from (12) 
for our experimental setup for a sample with rlsv = 5"0 °. 
It can be seen that the reflections increase rapidly in 
size with increasing h, and a detector has to be more 
than 20 cm wide to receive the entire sixth order. 

Equation (17) has been evaluated by Gauss's method 
of numerical integration. With the parameters of the 
spectrometer and the sample, L 2 may be calculated 
for each order of reflection. Since, the evaluation of 
this integral may be cumbersome, the correction factor 
1/L2 has been plotted for the first eight orders for 
different values of sample mosaic in Fig. 4. In general, 
1/L2 increases with increasing h or r/s, and even for 
21=6.0 cm it is appreciable for higher-order reflec- 
tions. It may also be noted that 1/L2 does not increase 
linearly with h. A correction factor of h will therefore 
underestimate the contribution of higher-order re- 
flections, while a correction factor h 2 will overestimate 
the contribution of higher-order reflections. It is im- 
portant to evaluate this correction factor if the ex- 
periment deals with large values of rlsv, 5, or h. 1/L2 
has been plotted in Fig. 4 with the assumption that 
the beam divergence, 5, is 1.0 ° and the height of the 
incident beam, w, is 1.0 cm. These values are typical 
for an experimental arrangement for studying lamellar 
samples. However, if e and w differ substantially from 
these values then the value of the appropriate correc- 
tion factor cannot be obtained from Fig. 4. The devia- 
tion from the plots of 1/L2 will be more significant for 
small values of detector opening, 2l, and large values 
of the order of reflection, h. 

For small values of t/s and h the following simple 
algorithm gives a good first approximation to 1/Lz 
as calculated from (17): (1) Divide the slits (incident 
beam) into ten equal parts. (2) Assume that each part 
of the slit gives rise to uniform intensity over a length 
c~ as given by (9). This is equivalent to drawing a line 
of length ~ around each element. (3) The correction 
factor may be obtained from the part of these line 
elements intercepted by the slits. 

If the width of a reflection is much greater than the 
opening of the detector slits, then one will essentially 
measure the peak intensity of the reflection. Substitu- 
tion z = 0 in (12) leads to 

) CIC2 erf w Im= 

+ (ez+fla)l/2 exp 8(e~f iE)  . (19) 

If we further assume that w=0,  then (19) simplifies to 
0 0 CIC2 (20) I;.= 

With ~ and fl substituted from equations (9) and (6), 
this gives 

(_ '1'(. ,; 
Ira= R{27r[e2 +(rlsv2/d)2h2]},/2. (21) 
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If rlsv2/d>>e the correction factor is simply L 2 = 1/h, 
which will apply only when the above condition is 
satisfied. In general, the value of the factor 1/L2 will 
lie between 1 and h. 

Comparison with experiment 

In order to compare these expressions with experi- 

mental results, one needs the parameters which appear 
in the functions fl  and f2 and the characteristic of 
the sample. The shape of the function f2 may be 
studied by placing a narrow slit on the detector face 
and moving it vertically up and down to sample dif- 
ferent sections of the beam profile. In our experiments 
a 17x17 cm position-sensitive detector (Alberi, 
Fischer, Radeka, Rogers & Schoenborn, 1975) was 
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Fig. 4. Correct ion factor I/L2 for the first eight reflections for qs = 5, 10, and 20 °. The parameters are: R = 70 cm, & = 2.37 A, d = 58 A, s = 1-0 °, 

w = 1.0 cm. 1/1-,2 has been plotted for four values of detector slits (2/): x 1.2 cm; C) 2.4 cm; A 4.0 cm; • 6.0 cm. 

AC 3 3 A - 9 "  



818 NEUTRON DIFFRACTION FROM LAMELLAR STRUCTURES 

used so that the beam profile could be directly ob- 
served. For this setup L I =  1/sin 208. If collimating 
slits are used before the detector, the value of LI will 
have to be calculated from (3) in terms of the con- 
stants of the spectrometer. 

The shape of the function f2 depends on the vertical 
mosaic width of the sample, tlsv. The value of this 
constant may be determined by taking a rocking curve 
of the sample with narrow collimation slits. If t/s is 
much greater than the characteristic widths of the 
collimating slits and r/~t, then the width of the rocking 
curve is equal to t/s. However, if r/s is comparable to 
other characteristic widths, then all the widths will 
have to be determined with the help of a perfect single 
crystal, such as germanium. The value of t/s may then 
be found from the observed rocking curve and the 
known resolution function of spectrometer by following 
a procedure similar to that of Cooper & Nathans (1968). 
If the distribution of crystallites has a cylindrical sym- 
metry about the normal to the sample, tlsn = tlsv and 
the same measurement gives both the characteristic 
widths. For an asymmetric distribution of crystallites, 
~lsv may be determined by rotating the sample by 
90 ° so that the original vertical direction lies in the 
scattering plane, and then analyzing the rocking curve. 

Rocking curves of a DPL sample in the smectic 
phase were taken with the 17 x 17 cm detector. The 
mosaic width of the sample was determined to be 3.2 ° . 
Since the data were collected with a position-sensitive 
detector, the same set of data could be analyzed for 
different acceptance widths of the detector. The area 
of the rocking curves vs the detector opening is plotted 
in Fig. 5 for three orders of reflection. Each integrated 
intensity is normalized to the open-detector integrated 
intensity of the same reflection. It was found that a 
detector opening of 7 cm was sufficient to accept the 
entire diffracted beam from the fourth-order reflec- 
tion. The agreement between the continuous curves 
calculated from (17) and the data points is very good. 

[ . C  I 

7 
U.I 
I--" 

i 
0 . 5  0 0 h - - I  

/ ~ /  • h=4 

_z / J  
I I I I 

0.5 I.(3 1.5 2.0 2.5 
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Fig. 5. Integrated intensity for different widths of detector slits. 
Open circles represent observed intensities for first-order reflec- 
tion, solid triangles for third-order reflection and solid circles 
for fourth-order reflection. The continuous curves have been cal- 
culated from equation (17). Some systematic deviation for small 
values of l occurs for first-order reflections because the rocking 
curve for this order was not exactly Gaussian but had a greater 
concentration of intensity in the center. 

Discussion 

Owing to the vertical divergence of the beam, Bragg 
reflections from a sample with large mosaic spread 
will extend over large regions in the direction per- 
pendicular to the scattering plane. This effect increases 
with the order of reflection, and for some biological 
samples the vertical spread may be 20 cm or more. If 
the detector is smaller than the size of the reflections, 
the correction due to this loss of intensity (which 
varies with the order of reflection) easily exceeds the 
statistical error in data collection and may sub- 
stantially alter the analysis of the structure. Since linear 
detectors are being installed in a number of labora- 
tories, a proper consideration of vertical divergence has 
become very important. Therefore it is worth while to 
determine the parameters of the sample and the spec- 
trometer. The exact correction factor may then be 
evaluated for each reflection from the crystal. 

Although we have considered Gaussian functions 
to represent f l  and f2, this procedure may be extended 
for any given function. If an experimental analysis 
shows that these functions differ substantially from 
the Gaussian shape then the appropriate shape func- 
tions may be substituted in (11) for the evaluation of 
the correction factor. A similar correction factor will 
apply when the diffraction data are collected by taking 
a 0-20 scan of the crystal. 

This research was carried out at Brookhaven Na- 
tional Laboratory under the auspices of the United 
States Energy Research and Development Administra- 
tion. The authors are indebted to Drs M. Yeager and 
J. E. Cain for many useful discussions. 
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